Copied to
clipboard

G = C42.667C23order 128 = 27

82nd non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.667C23, C8⋊C813C2, (C2×C8).36D4, C83Q819C2, C4⋊Q165C2, C4.10(C4○D8), C4.5(C8⋊C22), C4.4D8.6C2, C4⋊Q8.91C22, C2.10(C83D4), (C4×C8).260C22, C4.SD1639C2, C4.5(C8.C22), C2.10(C8.2D4), C41D4.50C22, C2.15(C8.12D4), C22.68(C41D4), (C2×C4).724(C2×D4), SmallGroup(128,452)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.667C23
C1C2C22C2×C4C42C4×C8C8⋊C8 — C42.667C23
C1C22C42 — C42.667C23
C1C22C42 — C42.667C23
C1C22C22C42 — C42.667C23

Generators and relations for C42.667C23
 G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=a-1b2, e2=b, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=a-1c, ece-1=b-1c, ede-1=a2d >

Subgroups: 240 in 93 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C2×C8, Q16, C2×D4, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C41D4, C4⋊Q8, C2×Q16, C8⋊C8, C4.4D8, C4.SD16, C4⋊Q16, C83Q8, C42.667C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C41D4, C4○D8, C8⋊C22, C8.C22, C8.12D4, C83D4, C8.2D4, C42.667C23

Character table of C42.667C23

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J8K8L
 size 111116222222161616444444444444
ρ111111111111111111111111111    trivial
ρ21111-1111111-111-1-1-1-11-1-11-1-111    linear of order 2
ρ31111-111111111-111-1-1-11-1-11-1-1-1    linear of order 2
ρ411111111111-11-1-1-111-1-11-1-11-1-1    linear of order 2
ρ511111111111-1-1111-1-1-11-1-11-1-1-1    linear of order 2
ρ61111-11111111-11-1-111-1-11-1-11-1-1    linear of order 2
ρ71111-1111111-1-1-1111111111111    linear of order 2
ρ8111111111111-1-1-1-1-1-11-1-11-1-111    linear of order 2
ρ922220-22-2-22-20000000200-200-22    orthogonal lifted from D4
ρ10222202-22-2-2-20002-2000-2002000    orthogonal lifted from D4
ρ1122220-2-2-22-2200000-2-200200200    orthogonal lifted from D4
ρ1222220-2-2-22-22000002200-200-200    orthogonal lifted from D4
ρ1322220-22-2-22-20000000-2002002-2    orthogonal lifted from D4
ρ14222202-22-2-2-2000-22000200-2000    orthogonal lifted from D4
ρ152-22-200-2002000022--2-20-2-2-2i-2--22i0    complex lifted from C4○D8
ρ162-22-200-20020000-2-2-2--202--2-2i2-22i0    complex lifted from C4○D8
ρ172-22-200-20020000-2-2--2-202-22i2--2-2i0    complex lifted from C4○D8
ρ182-22-200200-200002-2-2--2-2i2-20-2--202i    complex lifted from C4○D8
ρ192-22-200200-20000-22-2--22i-2-202--20-2i    complex lifted from C4○D8
ρ202-22-200200-20000-22--2-2-2i-2--202-202i    complex lifted from C4○D8
ρ212-22-200-2002000022-2--20-2--22i-2-2-2i0    complex lifted from C4○D8
ρ222-22-200200-200002-2--2-22i2--20-2-20-2i    complex lifted from C4○D8
ρ234-4-44040-4000000000000000000    orthogonal lifted from C8⋊C22
ρ244-4-440-404000000000000000000    orthogonal lifted from C8⋊C22
ρ2544-4-4000040-4000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-40000-404000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C42.667C23
On 64 points
Generators in S64
(1 18 5 22)(2 19 6 23)(3 20 7 24)(4 21 8 17)(9 63 13 59)(10 64 14 60)(11 57 15 61)(12 58 16 62)(25 52 29 56)(26 53 30 49)(27 54 31 50)(28 55 32 51)(33 44 37 48)(34 45 38 41)(35 46 39 42)(36 47 40 43)
(1 61 20 13)(2 62 21 14)(3 63 22 15)(4 64 23 16)(5 57 24 9)(6 58 17 10)(7 59 18 11)(8 60 19 12)(25 36 54 41)(26 37 55 42)(27 38 56 43)(28 39 49 44)(29 40 50 45)(30 33 51 46)(31 34 52 47)(32 35 53 48)
(1 28 5 32)(2 56 6 52)(3 26 7 30)(4 54 8 50)(9 35 13 39)(10 47 14 43)(11 33 15 37)(12 45 16 41)(17 31 21 27)(18 51 22 55)(19 29 23 25)(20 49 24 53)(34 62 38 58)(36 60 40 64)(42 59 46 63)(44 57 48 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 61 50 20 45 13 29)(2 37 62 55 21 42 14 26)(3 34 63 52 22 47 15 31)(4 39 64 49 23 44 16 28)(5 36 57 54 24 41 9 25)(6 33 58 51 17 46 10 30)(7 38 59 56 18 43 11 27)(8 35 60 53 19 48 12 32)

G:=sub<Sym(64)| (1,18,5,22)(2,19,6,23)(3,20,7,24)(4,21,8,17)(9,63,13,59)(10,64,14,60)(11,57,15,61)(12,58,16,62)(25,52,29,56)(26,53,30,49)(27,54,31,50)(28,55,32,51)(33,44,37,48)(34,45,38,41)(35,46,39,42)(36,47,40,43), (1,61,20,13)(2,62,21,14)(3,63,22,15)(4,64,23,16)(5,57,24,9)(6,58,17,10)(7,59,18,11)(8,60,19,12)(25,36,54,41)(26,37,55,42)(27,38,56,43)(28,39,49,44)(29,40,50,45)(30,33,51,46)(31,34,52,47)(32,35,53,48), (1,28,5,32)(2,56,6,52)(3,26,7,30)(4,54,8,50)(9,35,13,39)(10,47,14,43)(11,33,15,37)(12,45,16,41)(17,31,21,27)(18,51,22,55)(19,29,23,25)(20,49,24,53)(34,62,38,58)(36,60,40,64)(42,59,46,63)(44,57,48,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,61,50,20,45,13,29)(2,37,62,55,21,42,14,26)(3,34,63,52,22,47,15,31)(4,39,64,49,23,44,16,28)(5,36,57,54,24,41,9,25)(6,33,58,51,17,46,10,30)(7,38,59,56,18,43,11,27)(8,35,60,53,19,48,12,32)>;

G:=Group( (1,18,5,22)(2,19,6,23)(3,20,7,24)(4,21,8,17)(9,63,13,59)(10,64,14,60)(11,57,15,61)(12,58,16,62)(25,52,29,56)(26,53,30,49)(27,54,31,50)(28,55,32,51)(33,44,37,48)(34,45,38,41)(35,46,39,42)(36,47,40,43), (1,61,20,13)(2,62,21,14)(3,63,22,15)(4,64,23,16)(5,57,24,9)(6,58,17,10)(7,59,18,11)(8,60,19,12)(25,36,54,41)(26,37,55,42)(27,38,56,43)(28,39,49,44)(29,40,50,45)(30,33,51,46)(31,34,52,47)(32,35,53,48), (1,28,5,32)(2,56,6,52)(3,26,7,30)(4,54,8,50)(9,35,13,39)(10,47,14,43)(11,33,15,37)(12,45,16,41)(17,31,21,27)(18,51,22,55)(19,29,23,25)(20,49,24,53)(34,62,38,58)(36,60,40,64)(42,59,46,63)(44,57,48,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,61,50,20,45,13,29)(2,37,62,55,21,42,14,26)(3,34,63,52,22,47,15,31)(4,39,64,49,23,44,16,28)(5,36,57,54,24,41,9,25)(6,33,58,51,17,46,10,30)(7,38,59,56,18,43,11,27)(8,35,60,53,19,48,12,32) );

G=PermutationGroup([[(1,18,5,22),(2,19,6,23),(3,20,7,24),(4,21,8,17),(9,63,13,59),(10,64,14,60),(11,57,15,61),(12,58,16,62),(25,52,29,56),(26,53,30,49),(27,54,31,50),(28,55,32,51),(33,44,37,48),(34,45,38,41),(35,46,39,42),(36,47,40,43)], [(1,61,20,13),(2,62,21,14),(3,63,22,15),(4,64,23,16),(5,57,24,9),(6,58,17,10),(7,59,18,11),(8,60,19,12),(25,36,54,41),(26,37,55,42),(27,38,56,43),(28,39,49,44),(29,40,50,45),(30,33,51,46),(31,34,52,47),(32,35,53,48)], [(1,28,5,32),(2,56,6,52),(3,26,7,30),(4,54,8,50),(9,35,13,39),(10,47,14,43),(11,33,15,37),(12,45,16,41),(17,31,21,27),(18,51,22,55),(19,29,23,25),(20,49,24,53),(34,62,38,58),(36,60,40,64),(42,59,46,63),(44,57,48,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,61,50,20,45,13,29),(2,37,62,55,21,42,14,26),(3,34,63,52,22,47,15,31),(4,39,64,49,23,44,16,28),(5,36,57,54,24,41,9,25),(6,33,58,51,17,46,10,30),(7,38,59,56,18,43,11,27),(8,35,60,53,19,48,12,32)]])

Matrix representation of C42.667C23 in GL6(𝔽17)

1600000
0160000
000100
0016000
00111615
0016011
,
16150000
110000
000100
0016000
00111615
0016011
,
060000
300000
0094016
003811
008850
0090412
,
480000
13130000
0099120
0034510
0081301
0091384
,
10100000
1200000
000010
00111615
000100
0010016

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,1,16,0,0,1,0,1,0,0,0,0,0,16,1,0,0,0,0,15,1],[16,1,0,0,0,0,15,1,0,0,0,0,0,0,0,16,1,16,0,0,1,0,1,0,0,0,0,0,16,1,0,0,0,0,15,1],[0,3,0,0,0,0,6,0,0,0,0,0,0,0,9,3,8,9,0,0,4,8,8,0,0,0,0,1,5,4,0,0,16,1,0,12],[4,13,0,0,0,0,8,13,0,0,0,0,0,0,9,3,8,9,0,0,9,4,13,13,0,0,12,5,0,8,0,0,0,10,1,4],[10,12,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,16,0,0,0,0,0,15,0,16] >;

C42.667C23 in GAP, Magma, Sage, TeX

C_4^2._{667}C_2^3
% in TeX

G:=Group("C4^2.667C2^3");
// GroupNames label

G:=SmallGroup(128,452);
// by ID

G=gap.SmallGroup(128,452);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,387,100,1123,136,2804,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=a^-1*b^2,e^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^-1*c,e*c*e^-1=b^-1*c,e*d*e^-1=a^2*d>;
// generators/relations

Export

Character table of C42.667C23 in TeX

׿
×
𝔽